PHASE DIAGRAM OF THE $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ - $\mathrm{Ag}_{2} \mathrm{O}$ SYSTEM II. Phase diagram of $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{O}$ system

E. Wenda

DEPARTMENT OF CHEMISTRY, JAGIELLONIAN UNIVERSITY, 30-060 KRAKÓW, KAVASIA 3, POLAND

(Received January 18, 1990)

> The phase diagram of the $\mathrm{MoO}_{3}-\mathrm{Ag} 22^{\mathrm{O}}$ system was constructed. A comparison of the phase diagram presented here with the phase diagram of $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ system presented in [2] revealed some discrepancies.
> It was found that phase equilibrium in $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{O}$ system could be reached only after cooling the previously melted mixtures of silver and molybdenum oxides.

In a previous paper [1] the $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Ag}_{2} \mathrm{O}$ phase diagram was described. As a continuation of the study of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{O}$ triple system the present investigations is concerned with the $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{O}$ phase diagram. This diagram has been described by Kohmuller and Faurie [2] who investigated the composition range $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$. When repeating their experiments with the use of differently prepared samples the present author could not confirm the incongruent melting of both latter compounds which was postulated by them. This was the reason why the reinvestigation of the $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{O}$ system was considered to be necessary.

Experimental

Four series of samples were prepared. The first one used for the introductory thermal analysis was obtained by heating the mixtures of MoO_{3} and $\mathrm{Ag}_{2} \mathrm{O}$ at 660° in open quartz tubes for 24 hours and slowly cooling to room temperature in the course of 24 hours. The chemical and phase composi-
tions of the samples as well as the appropriate thermal data are given in Table 1.

In the range from 0 to ~ 15 mole $\% \mathrm{Ag}_{2} \mathrm{O}$ no melting of the samples took place. However, at higher $\mathrm{Ag}_{2} \mathrm{O}$ content total or partial fusion occurred and in the case of samples with more than 50 mole $\% \mathrm{Ag}_{2} \mathrm{O}$ the segregation of metallic silver was observed.

Based on these results an additional series of samples containing 15-45 mole $\% \mathrm{Ag}_{2} \mathrm{O}$ was prepared by heating the mixtures of oxides at $470^{\circ}-500^{\circ}$ in air for 24 hours and rapidly cooling to the liquid nitrogen temperature (Table 2). From the samples containing 40 and 45 mole $\% \mathrm{Ag}_{2} \mathrm{O}$ metallic silver segregated.

The third series of samples containing $20-80$ mole $\% \mathrm{Ag}_{2} \mathrm{O}$ was prepared by heating the mixtures of oxides at $420^{\circ}-480^{\circ}$ in air, keeping two or three days at these temperatures and slowly cooling down in the course of two days. The results are collected in Table 3.

Some discrepancies between the data obtained for the series 1,2 and 3 were the reason for the preparation of the fourth series obtained by melting the mixtures of molybdenum and silver oxides in air and individually cooling down (Table 4).

The composition of all samples was checked analytically. The content of silver was determined by dissolving the samples in HNO_{3} and subsequently in NaOH and titrating with $\mathrm{NH}_{4} \mathrm{SCN}$ solution (Tables 1-4).

Differential thermal and thermogravimetric analyses were carried out using a Mettler TA-2 Thermoanalyzer. $\mathrm{Al}_{2} \mathrm{O}_{3}$ was used as reference material. The flow of air over the samples was $4 \mathrm{l} / \mathrm{h}$ and the heating rate 10 $\mathrm{deg} / \mathrm{min}$. The samples were heated from room temperature to 800°.

Owing to the sublimation of MoO_{3} observed at high temperatures thermal analyses had to be carried out possibly rapidly. Under such conditions the check of the reversibility of thermal effects in the course of programmed cooling was impossible. The samples were characterized by x-ray powder diffractometry using a DRON-2 x-ray diffractometer (CuK_{α} radiation). The interplanar distances of the samples were compared with the data from [2] and also Powder Diffraction File.

X-ray reflections characteristic of silver oxide as well as metallic silver were very much diffuse owing to the dispersion of the used radiation. The additional measurements using x -ray heating camera were performed for samples containing 20,33 and 50 mole $\% \mathrm{Ag}_{2} \mathrm{O}$. These were composition corresponding to the compounds: $\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ and $\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ respectively. The aim of these experiments was the investigations of the phase transformations of the above compounds. The samples were prepared
Table 1 Data for samples heated at $660^{\circ} \mathrm{C}$ and slowly cooled down

No	Assumed composition, mole \% Ag2O	Chemical analysis, mole \% $\mathrm{Ag}_{2} \mathrm{O}$	DTA peaks, ${ }^{\circ} \mathrm{C}$ (all endothermic)	Phases detected in the final product
1	1	1.0	510790	
2	2	1.9	520780	
3	5	4.6	515760	$\mathrm{MoO}_{3}, \mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$
4	10	9.4	525720	$\mathrm{MoO}_{3},{\mathrm{Ag} 2 \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7} \mathrm{l}}$
5	15	14.4	530	$\mathrm{MoO}_{3},{\mathrm{Ag} 2 \mathrm{Mo}_{4} \mathrm{O}_{13}}$
6	20	18.7	525	${\mathrm{Ag} 2 \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{MoO}_{3}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}{ }^{\text {a }} \text {, }}$
7	20	18.9	497527	$\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{MoO}_{3}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$
8	25	23.8	510520	$\mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7}, \mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13},\left(\mathrm{MoO}_{3}\right)^{*}$
9	33		510	$\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7},\left(\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}\right),\left(\mathrm{MoO}_{3}\right)$
10	40	38.5	490	$\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$
11	50	45.4	500955	$\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}(\mathrm{Ag})$

Table 2 Data for samples obtained by heating the mixtures of MoO_{3} and $\mathrm{Ag}_{2} \mathrm{O}$ at $470-500^{\circ} \mathrm{C}$ in air and rapidly cooled down

No	Assumed composition, mole $\% \mathrm{Ag}_{2} \mathrm{O}$	Chemical analysis, mole \% Ag2O	$\begin{gathered} \text { DTA peaks, }{ }^{\circ} \mathrm{C} \\ \text { (all endothermic) } \end{gathered}$	Phases detected in the final product
1	15	14.4	530670	$\mathrm{MoO}_{3}, \mathrm{Ag} 2 \mathrm{Mo4}^{(13}$
2	17.5	16.8	532623	$\mathrm{Ag}_{2} \mathrm{Mo4}_{4} \mathrm{O}_{13}, \mathrm{MoO}_{3}$,
3	20.0	17.4	509534	$\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{MoO}_{3}\left({\left.\mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7}\right)}^{\text {) }}\right.$
4	22.5	21.8	506533	${\mathrm{Ag} 2 \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7} \mathrm{l}}$
5	25.0	24.1	503524	
6	27.5	24.4	492516530	
7	30.0	29.4	509	$\mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7},{\mathrm{Ag} 2 \mathrm{Mo}_{4} \mathrm{O}_{13} \text {, }}$
8	33.0	30.5	508	${\mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}}_{7}, \mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$,
9	36.0	34.8	496513	$\mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7},\left(\mathrm{Ag} 2 \mathrm{Mo4}^{2} \mathrm{O}_{13}\right)$
10	40.0	$\begin{aligned} & 36.1^{1)} \\ & 38.5 \end{aligned}$	$\begin{gathered} 494512961 \\ 498 \end{gathered}$	$\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \mathrm{Ag},\left(\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}\right)$ $\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \mathrm{Ag}$
11	45.0	$40.7{ }^{\text {2 }}$	500	
12	100.0	78.0	506960 440961	$\begin{aligned} & \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \mathrm{Ag} \\ & \mathrm{Ag} \end{aligned}$

1) and 2) - the samples composed of two phases. One of them remained on a sieve (38.5 mole $\%$ and 78 mole $\% \mathrm{Ag}_{2} \mathrm{O}$) *) () - means trace of compound
Table 3 Data for samples heated below their melting points and slowly cooled down

No	$\begin{gathered} \hline \text { Assumed mole \%, } \\ \mathrm{Ag}_{2} \mathrm{O} \\ \hline \end{gathered}$	Chemical analysis, mole $\% \mathrm{Ag}_{2} \mathrm{O}$	The way of preparation of the samples	DTA peaks, ${ }^{\circ} \mathrm{C}$ (all endothermic)	Phases detected in the final product
1	20	19.2	Heating during 340 h at $480^{\circ} \mathrm{C}$	536	$\mathrm{Ag}_{2} \mathrm{Mo4O}_{13}$, $\left(\mathrm{MoO}_{3}\right)^{*}$
2	20	19.2	Additional heating during 288 h at $480^{\circ} \mathrm{C}$	532	identical as above
3	21	20.6	$\begin{gathered} 48 \mathrm{~h} \text { at } 480^{\circ} \\ 72 \mathrm{~h} \text { cooling down } \end{gathered}$	532	$\mathrm{Ag}_{2} \mathrm{Mo4O}_{13},\left(\mathrm{MoO}_{3}\right),\left(\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}\right)$
4	28	26.9	72 h at $480^{\circ} \mathrm{C}$ 120 h cooling down	518	
5	33	32.1	144 h at $480^{\circ} \mathrm{C}$ 48 h cooling down	516	$\mathrm{Ag} 2 \mathrm{Mo} 2 \mathrm{O}_{7,}\left(\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}\right)$
6	40	37.5	72 h at $420^{\circ} \mathrm{C}$ 48 h cooling down	504	$\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$

Table 3 continued

No	Assumed mole $\% \mathrm{Ag}_{2} \mathrm{O}$	Chemical analysis, mole \% Ag2O	The way of preparation of the samples	DTA peaks, ${ }^{\circ} \mathrm{C}$ (all endothermic)	Phases detected in the final product
7	50	48.2	72 h at $420^{\circ} \mathrm{C}$ 96 h cooling down 386 h at $320^{\circ} \mathrm{C}$ 120 h at 320°	$\begin{aligned} & 495550 \\ & 490555 \\ & 494561 \end{aligned}$	$\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4,} \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \mathrm{Ag}$ $\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4},\left(\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}\right),(\mathrm{Ag})$ $\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4},\left(\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O} \mathbf{7}\right),(\mathrm{Ag})$
8	55	54.6	76 h at $480^{\circ} \mathrm{C}$ 24 h cooling down	500540	β - $\mathrm{gg} 2_{2} \mathrm{MoO}_{4}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \mathrm{Ag}$, $\left(\mathrm{MoO}_{3}\right)$
9	60	59.2	72 h at $450^{\circ} \mathrm{C}$ 3 h cooling down	500562	$\mathrm{Ag}_{2} \mathrm{MoO}_{4,} \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \mathrm{Ag}$
10	65	58.05	72 h at 480° 75 h cooling	494550	$\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \mathrm{MoO}_{3}, \mathrm{Ag}$
11	65	65.1	$\begin{aligned} & 120 \mathrm{~h} \text { at } 480^{\circ} \mathrm{C} \\ & 96 \mathrm{~h} \text { cooling } \end{aligned}$	572	$\beta-\mathrm{Ag} 2 \mathrm{MoO}_{4}, \mathrm{Ag},\left(\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}\right)$
12	70	71.1	72 h at $460^{\circ} \mathrm{C}$ 48 h cooling down	494526554	$\mathrm{Ag}, \beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$
13	80	83.1	168 h at $480^{\circ} \mathrm{C}$	571	$\mathrm{Ag}_{2} \beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}, \mathrm{Ag}_{2} \mathrm{MO}_{2} \mathrm{O}_{7}$

*) () - means trace of compound
Table 4 Data for samples melted and cooled down in various period of time

No	Assumed mole \%	Chemical analysis, mole \% $\mathrm{Ag}_{2} \mathrm{O}$	DTA peaks, ${ }^{\circ} \mathrm{C}$ (all endothermic)	Phases detected in the final product
1	17.5	17.4	502538	
2	20	20.6	537	$\mathrm{Ag} 2 \mathrm{Mo4}_{4} \mathrm{O}_{13,} \mathrm{MoO}_{3}$
3	25	23.7	506528	
4	28	26.9	518	$\mathrm{Ag} 2 \mathrm{Mo2O}_{2} \mathrm{O}_{\text {, }}{\mathrm{Ag} 2 \mathrm{Mo}_{4} \mathrm{O}_{13}}$
5	30	29.4	511	$\mathrm{Ag} 2 \mathrm{Mo2O}_{2} \mathrm{Ag}_{2} \mathrm{MO}_{4} \mathrm{O}_{13}$
6	33	32.5	513	$\mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7}\left(\mathrm{MoO}_{3}\right)^{*}$
7	36	34.8	513	$\mathrm{Ag} 2 \mathrm{Mo} 2 \mathrm{O}_{7}\left(\mathrm{Ag} 2 \mathrm{Mo4O}_{13}\right)$
8	40	36.1	498	$\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$
9	40	38.0	500	$\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}, \beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$
10	45	41.9	497534	$\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O} 7,\left(\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}\right)$
11	45	43.0	500	$\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}, \mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7}$,
12	55	44.8	496554	$\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}, \mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7}$,
13	60	59.2	494572	-
14	70	71.1	578	$\begin{aligned} & \beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}, \mathrm{Ag}^{2} \\ & \left(\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}\right),\left(\mathrm{Ag}_{2} \mathrm{MO}_{4} \mathrm{O}_{13}\right) \end{aligned}$
15	80	83.7	572	$\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}, \mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7},(\mathrm{Ag})$

[^0]by sintering $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ mixtures followed by grinding and repeated sintering. This procedure was repeated several times.

Results and discussion

On the basis of the data presented in Tables 1-5 the phase diagram of the $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{O}$ system shown in Fig. 1 was constructed.

Fig. 1 Phase diagram of MoO_{3} - $\mathrm{Ag}_{2} \mathrm{O}$ system
The following phases were found: $\mathrm{MoO}_{3}, \mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$ (20 mole $\% \mathrm{Ag}_{2} \mathrm{O}$), $\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ (33 mole $\% \mathrm{Ag}_{2} \mathrm{O}$), $\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}\left(50\right.$ mole $\% \mathrm{Ag}_{2} \mathrm{O}$) and $\mathrm{Ag}_{2} \mathrm{O}$ which decomposed at about 440° and above this temperature the metallic silver was observed in the system.

Phases: $\mathrm{MoO}_{3}, \mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ and Ag melted congruently at $790^{\circ}, 536^{\circ}, 516^{\circ}$ and 960°, respectively. β - $\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ melts incongruently at 576°.

The mentioned phases form three simple eutectic systems:

1. $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$ mixture crystallizes at about 528° and for about 16 mole $\% \mathrm{Ag}_{2} \mathrm{O}$ the composition of the liquid is the same as that of the solid.
2. $\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}-\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$, the composition of the eutectic corresponds to about 29 mole $\% \mathrm{Ag}_{2} \mathrm{O}$ and the eutectic temperature is about 508°.
3. $\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}-\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ system possesses eutectic point at about 40 mole $\% \mathrm{Ag}_{2} \mathrm{O}$ and melts at about 496°.

Table 5

No	The way of preparation of samples (according to [2])	DTA peaks, ${ }^{\circ} \mathrm{C}$ (all endothermic)	X-ray analysis
1	$\mathrm{AgNO}_{3}+\mathrm{Na}_{2} \mathrm{MoO}_{4}=\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ precipitation in the water solution	574	$\begin{aligned} & \beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4} \\ & \left(\alpha-\mathrm{Ag}_{2} \mathrm{MoO}_{4}\right)^{*} \end{aligned}$
2	$\mathrm{Ag}_{2} \mathrm{MoO}_{4}$		$\beta-\mathrm{Ag} 2 \mathrm{MoO}_{4}$
	after melting	578	$\left(\mathrm{Ag} 2 \mathrm{Mo4O}_{13}\right)$
3	$\mathrm{Ag} 2 \mathrm{MoO}_{4}+\mathrm{MoO}_{3}\left(450{ }^{\circ} \mathrm{C}\right)$	492513	$\mathrm{Ag} 2 \mathrm{Mo2O}_{7}$
4	$\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ after melting	511	$\begin{aligned} & {\mathrm{Ag} 2 \mathrm{Mo}_{2} \mathrm{O}_{7},}_{\left(\mathrm{MoO}_{3}\right)} \end{aligned}$
5	$\begin{aligned} & \mathrm{Ag}_{2} \mathrm{MoO}_{4}+2 \mathrm{MoO}_{3}\left(450^{\circ} \mathrm{C}\right) \\ & \mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13} \end{aligned}$	504538	$\begin{aligned} & \mathrm{Ag}_{2} \mathrm{MO}_{4} \mathrm{O}_{13}, \\ & \mathrm{MoO} 3 \end{aligned}$
6	$\mathrm{Ag}_{2} \mathrm{MO}_{4} \mathrm{O}_{13}$ after melting	$\begin{gathered} 506534 \\ (606) \\ \hline \end{gathered}$	$\begin{aligned} & {\mathrm{Ag} 2 \mathrm{MO}_{4} \mathrm{O}_{13}}^{\mathrm{MoO}_{3}} \\ & \hline \end{aligned}$

* () - means trace of compound

On the diagram results for the region above 580° and 50 mole $\% \mathrm{Ag}_{2} \mathrm{O}$ are lacking because in the course of experiments silver crept out of the crucible and formed an alloy with the platinum thermocouple.

Comparing the diagram of $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{O}$ system presented here and the diagram of $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ shown in paper [2] one can find similarities but also differences between the results. The diagram presented in [2] comprises the range of $0-50$ mole $\% \mathrm{Ag}_{2} \mathrm{O}$ and the diagram shown in this work includes full range of $0-100$ mole $\% \mathrm{Ag}_{2} \mathrm{O}$.

In both investigations the same phases were observed. It was stated in (2) that $\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$ and $\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ melted incongruently. Solution of the problem of the character of melting in the described system was by no means simple. The characteristic temperatures: $496^{\circ}, 508^{\circ}, 516^{\circ}, 528^{\circ}, 536^{\circ}$ were very close. However, the course of liquidus and solidus curves and also the sharp shape of endothermic peaks of samples containing 20 mole $\%$ and 33
mole $\% \mathrm{Ag}_{2} \mathrm{O}$ indicated that $\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$ and $\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ in our case melted congruently.

Based on their DTA analyses the authors of [2] suggested that $\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}, \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ and $\beta-\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ undergo phase transitions at 490 , 480 and 482° resp. In the present research the existence of such endothermic peaks in the case of $\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$ and $\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ was not confirmed. On the other hand in the case of samples containing β - $\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ (Tables 3 and 4) a weak endothermic DTA peak was observed between 492 and 500° corresponding to the 482° peak observed in [2]. However, no phase transformation about this temperature was observed in x-ray heating camera. The presence of small amounts of $\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ and metallic silver detected after heating $\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ suggests that this effect might be due to the partial disproportionation:

$$
2 \mathrm{Ag}_{2} \mathrm{MoO}_{4} \rightarrow \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}+2 \mathrm{Ag}+1 / 2 \mathrm{O}_{2}
$$

Analogous experiments in the x-ray heating camera did not indicate any phase transformations neither in the $\mathrm{Ag}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ nor in the $\mathrm{Ag}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$ phase.

The discrepancies between the results of both investigations may evidently be due to the differences in the way of the preparation of the samples. The role of experimental conditions should also be taken into account. If samples are obtained by the reaction occurring in the solid state (as it is in this case) such factors as dispersion of substrates and heating conditions may predominantly influence the kinetics of the process and thus the phase composition and generally the physico-chemical properties of the final product.

The author wishes to thank Professor M. Figlarz from Université de Picardie, Amiens for giving the possibility of carrying out in his laboratory a part of the experiments described.

References

[^1]Zusammenfassung - Es wurde das Phasendiagramm des Systemes MoO3-Ag2O erstellt. Der Vergleich dieses Phasendiagrammes mit dem des in (2) beschriebenen Systemes MoO_{3} $\mathrm{Ag}_{2} \mathrm{MoO}_{4}$, ergeben sich einige Unterschiede.

Man fand, daB ein Phasengleichgewicht im System $\mathrm{MoO}_{3}-\mathrm{Ag}_{2} \mathrm{O}$ nur nach Abkühlen des zuvor geschmolzenen Gemisches aus Silber- und Molybdänoxides erreicht werden kann.

[^0]: * ()-means trace of compound

[^1]: 1 E. Wenđa, Journal of Thermal Anal., (1985) 879.
 2 R. Kohlmullar and J. P. Faurie, Bull. Soc. Chim. Fr., 11 (1968) 4379.

