PHASE DIAGRAM OF THE V2O5 - M0O3 - Ag2O SYSTEM II. Phase diagram of M0O3 - Ag2O system

E. Wenda

DEPARTMENT OF CHEMISTRY, JAGIELLONIAN UNIVERSITY, 30-060 KRAKÓW, KAVASIA 3, POLAND

(Received January 18, 1990)

The phase diagram of the MoO₃ - Ag₂O system was constructed. A comparison of the phase diagram presented here with the phase diagram of MoO₃ - Ag₂MoO₄ system presented in [2] revealed some discrepancies.

It was found that phase equilibrium in MoO_3 - Ag₂O system could be reached only after cooling the previously melted mixtures of silver and molybdenum oxides.

In a previous paper [1] the $V_2O_5 - Ag_2O$ phase diagram was described. As a continuation of the study of $V_2O_5 - MoO_3 - Ag_2O$ triple system the present investigations is concerned with the $MoO_3 - Ag_2O$ phase diagram. This diagram has been described by Kohmuller and Faurie [2] who investigated the composition range $MoO_3 - Ag_2MoO_4$. When repeating their experiments with the use of differently prepared samples the present author could not confirm the incongruent melting of both latter compounds which was postulated by them. This was the reason why the reinvestigation of the $MoO_3 - Ag_2O$ system was considered to be necessary.

Experimental

Four series of samples were prepared. The first one used for the introductory thermal analysis was obtained by heating the mixtures of MoO₃ and Ag₂O at 660° in open quartz tubes for 24 hours and slowly cooling to room temperature in the course of 24 hours. The chemical and phase composi-

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

tions of the samples as well as the appropriate thermal data are given in Table 1.

In the range from 0 to ~ 15 mole % Ag₂O no melting of the samples took place. However, at higher Ag₂O content total or partial fusion occurred and in the case of samples with more than 50 mole % Ag₂O the segregation of metallic silver was observed.

Based on these results an additional series of samples containing 15-45 mole % Ag₂O was prepared by heating the mixtures of oxides at 470° -500° in air for 24 hours and rapidly cooling to the liquid nitrogen temperature (Table 2). From the samples containing 40 and 45 mole % Ag₂O metallic silver segregated.

The third series of samples containing 20-80 mole % Ag₂O was prepared by heating the mixtures of oxides at 420° - 480° in air, keeping two or three days at these temperatures and slowly cooling down in the course of two days. The results are collected in Table 3.

Some discrepancies between the data obtained for the series 1, 2 and 3 were the reason for the preparation of the fourth series obtained by melting the mixtures of molybdenum and silver oxides in air and individually cooling down (Table 4).

The composition of all samples was checked analytically. The content of silver was determined by dissolving the samples in HNO₃ and subsequently in NaOH and titrating with NH4SCN solution (Tables 1-4).

Differential thermal and thermogravimetric analyses were carried out using a Mettler TA-2 Thermoanalyzer. Al₂O₃ was used as reference material. The flow of air over the samples was 4 l/h and the heating rate 10 deg/min. The samples were heated from room temperature to 800° .

Owing to the sublimation of MoO₃ observed at high temperatures thermal analyses had to be carried out possibly rapidly. Under such conditions the check of the reversibility of thermal effects in the course of programmed cooling was impossible. The samples were characterized by x-ray powder diffractometry using a DRON-2 x-ray diffractometer (CuK_{α} radiation). The interplanar distances of the samples were compared with the data from [2] and also Powder Diffraction File.

X-ray reflections characteristic of silver oxide as well as metallic silver were very much diffuse owing to the dispersion of the used radiation. The additional measurements using x-ray heating camera were performed for samples containing 20, 33 and 50 mole% Ag₂O. These were composition corresponding to the compounds: Ag₂Mo₄O₁₃, Ag₂Mo₂O₇ and β -Ag₂MoO₄ respectively. The aim of these experiments was the investigations of the phase transformations of the above compounds. The samples were prepared

s heated at 660°C and slowly cooled down	med composition, Chemical analysis, DTA peaks, °C Phases detected	mole % Ag2O mole % Ag2O (all endothermic) in the final product	1 1.0 510 790	2 1.9 520 780	5 4.6 515 760 MoO3, Ag2Mo4O13, Ag2Mo2O7	10 9.4 525 720 MoO3, Ag2Mo4O13, Ag2Mo2O7	15 14.4 530 MoO3, Ag2Mo4O13	20 18.7 525 Ag2Mo4O13, MoO3, Ag2Mo2O7	20 18.9 497 527 Ag2Mo4O13, MoO3, Ag2Mo2O7	25 23.8 510 520 Ag2Mo2O7, Ag2Mo4O13, (MoO3)*	33 510 510 Ag2M0207, (Ag2M04013), (MoO3)	40 38.5 490 Ag2Mo2O7	
r samples heated at 660°C and slowly c	Assumed composition, C	mole % Ag2O	1	7	S	10	15	20	20	25	33	40	
Table 1 Data foi	No		1	7	°.	4	S	6	7	ø	6	10	1

ĝ
cooled
slowly
C and
at 660°
heated
amples
l for s
Data
able l

* () - means trace of compound

No No	Assumed composition,	Chemical analysis,	DTA peaks, °C	Phases detected
	mole % Ag2O	mole % Ag2O	(all endothermic)	in the final product
1	15	14.4	530 670	MoO3, Ag2Mo4O13
7	17.5	16.8	532 623	Ag2M04O13, M0O3,
e	20.0	17.4	509 534	Ag2M04O13, M0O3 (Ag2M02O7)
4	22.5	21.8	506 533	Ag2M04O13, Ag2M02O7
S	25.0	24.1	503 524	Ag2M04O13, Ag2M02O7
6	27.5	24.4	492 516 530	Ag2M04O13, Ag2M02O7
7	30.0	29.4	509	Ag2M02O7, Ag2M04O13,
80	33.0	30.5	508	Ag2Mo2O7, Ag2Mo4O13,
6	36.0	34.8	496 513	Ag2M02O7, (Ag2M04O13)
10	40.0	36.1 ¹⁾	494 512 961	Ag2M02O7, Ag, (Ag2M04O13)
		38.5	498	Ag2Mo2O7, Ag
11	45.0	40.7 ²⁾	500	
		78.0	506 960	Ag2Mo2O7, Ag
12	100.0		440 961	Ag

1) and 2) - the samples composed of two phases. One of them remained on a sieve (38.5 mole % and 78 mole % Ag2O)

*) () - means trace of compound

WENDA: PHASE DIAGRAM

J. Thermal Anal., 36, 1990

Table 3 Data for samples heated below their melting points and slowly cooled down

Phases detected in the final product		Ag2M04O13, (MoO3)*	identical as above		Ag2M04O13, (M0O3), (Ag2M02O7)				Ag2Mo2O7, (Ag2Mo4O13)		Ag2Mo2O7
DTA peaks, °C	(all endothermic)	536	532		532		518		516		504
The way of preparation	of the samples	Heating during 340 h at 480°C	Additional heating during 288 h at 480 ^o C	48 h at 480°	72 h cooling down	72 h at 480°C	120 h cooling down	144 h at 480°C	48 h cooling down	72 h at 420°C	48 h cooling down
Chemical analysis,	mole % Ag2O	19.2	19.2	20.6		26.9		32.1		37.5	
Assumed mole %,	Ag2O	20	20	21		28		33		40	
°N N		H	7	ŝ		4		S		9	

WENDA: PHASE DIAGRAM

Phases detected in the final product			β -Ag2MoO4,Ag2Mo2O7, Ag	B-Ag2MoO4,(Ag2Mo2O7),(Ag)	B-Ag2MoO4, (Ag2Mo2O7), (Ag)		β-Ag2MoO4,Ag2Mo2O7, Ag, (MoO3)		Ag2MoO4,Ag2Mo2O7, Ag		β -Ag2MoO4,Ag2Mo2O7,MoO3, Ag		eta-Ag2MoO4,Ag, (Ag2Mo2O7)		Ag, <i>β</i> -Ag2MoO4, Ag2Mo2O7		Ag, <i>β</i> -Ag2MoO4, Ag2Mo2O7
DTA peaks, °C	(all endothermic)		495 550	490 555	494 561		500 540		500 562		494 550		572		494 526 554		571
The way of preparation	of the samples	72 h at 420°C	96 h cooling down	386 h at 320 ^o C	120 h at 320 ^o	76 h at 480°C	24 h cooling down	72 h at 450°C	3 h cooling down	72 h at 480°	75 h cooling	120 h at 480°C	96 h cooling	72 h at 460°C	48 h cooling down	168 h at 480°C	
Chemical analysis,	mole % Ag20			48.2		54.6		59.2		58.05		65.1		71.1		83.1	
Assumed	mole % Ag20	50				55		60		65		65		70		80	
No		7				~		6		10		11		12		13	

*) () - means trace of compound

1**422**

WENDA: PHASE DIAGRAM

Table 3 continued

No	Assumed	Chemical analysis,	DTA peaks, ^o C	Phases detected in the final product
	mole %	mole % Ag2O	(all endothermic)	
÷	17.5	17.4	502 538	
7	20	20.6	537	Ag2M04O13,M0O3
3	25	23.7	506 528	
4	28	26.9	518	Ag2Mo2O7,Ag2Mo4O13
S	30	29.4	511	Ag2Mo2O7,Ag2Mo4O13
6	33	32.5	513	Ag2Mo2O7,(MoO3)*
7	36	34.8	513	Ag2M02O7,(Ag2M04O13)
8	40	36.1	498	Ag2Mo2O7, β-Ag2MoO4
6	40	38.0	500	Ag2Mo2O7, β-Ag2MoO4
10	45	41.9	497 534	β -Ag2MoO4, Ag2Mo2O7, (Ag2Mo4O13)
11	45	43.0	500	β -Ag2MoO4, Ag2Mo2O7,
12	55	44.8	496 554	β -Ag2MoO4, Ag2Mo2O7,
13	60	59.2	494 572	
4	70	71.1	578	β-Ag2MoO4, Ag, (AenMcnOn), (AenMo4O11)
5	80	83.7	572	B-Ag2MoO4, Ag2Mo2O7, (Ag)

Table 4 Data for samples melted and cooled down in various period of time

J. Thermal Anal., 36, 1990

* ()-means trace of compound

by sintering MoO₃ - Ag₂MoO₄ mixtures followed by grinding and repeated sintering. This procedure was repeated several times.

Results and discussion

On the basis of the data presented in Tables 1-5 the phase diagram of the MoO₃ - Ag₂O system shown in Fig. 1 was constructed.

Fig. 1 Phase diagram of MoO3 - Ag2O system

The following phases were found: MoO₃, Ag₂Mo₄O₁₃ (20 mole % Ag₂O), Ag₂Mo₂O₇ (33 mole % Ag₂O), β -Ag₂MoO₄ (50 mole % Ag₂O) and Ag₂O which decomposed at about 440° and above this temperature the metallic silver was observed in the system.

Phases: MoO₃, Ag₂Mo₄O₁₃, Ag₂Mo₂O₇ and Ag melted congruently at 790°, 536°, 516° and 960°, respectively. β -Ag₂MoO₄ melts incongruently at 576°.

J. Thermal Anal., 36, 1990

The mentioned phases form three simple eutectic systems:

1. MoO₃-Ag₂Mo₄O₁₃ mixture crystallizes at about 528° and for about 16 mole % Ag₂O the composition of the liquid is the same as that of the solid.

2. Ag₂Mo₄O₁₃ - Ag₂Mo₂O₇, the composition of the eutectic corresponds to about 29 mole % Ag₂O and the eutectic temperature is about 508° .

3. Ag₂Mo₂O₇ - β -Ag₂MoO₄ system possesses eutectic point at about 40 mole % Ag₂O and melts at about 496°.

Table	5
-------	---

No	The way of preparation of samples (according to [2])	DTA peaks, ^o C (all endothermic)	X-ray analysis
1	$AgNO_3 + Na_2MoO_4 = Ag_2MoO_4$	574	β -Ag2MoO4 (α -Ag2MoO4)*
2	Ag2MoO4		β-Ag2MoO4
	after melting	578	(Ag2M04O13)
3	Ag2MoO4 + MoO3 (450°C)	492 513	Ag2Mo2O7
	Ag2M02O7		
4	Ag2Mo2O7	511	Ag2M02O7,
	after melting		(MoO3)
5	Ag2MoO4 +2MoO3 (450°C)	504 538	Ag2M04O13,
,	Ag2M04O13		MoO3
6	Ag2M04O13	506 534	Ag2M04O13
	after melting	(606)	MoO3

* () - means trace of compound

On the diagram results for the region above 580° and 50 mole % Ag₂O are lacking because in the course of experiments silver crept out of the crucible and formed an alloy with the platinum thermocouple.

Comparing the diagram of $MoO_3 - Ag_2O$ system presented here and the diagram of $MoO_3 - Ag_2MoO_4$ shown in paper [2] one can find similarities but also differences between the results. The diagram presented in [2] comprises the range of 0-50 mole % Ag_2O and the diagram shown in this work includes full range of 0-100 mole % Ag_2O.

In both investigations the same phases were observed. It was stated in (2) that $Ag_2Mo_4O_{13}$ and $Ag_2Mo_2O_7$ melted incongruently. Solution of the problem of the character of melting in the described system was by no means simple. The characteristic temperatures: 496°, 508°, 516°, 528°, 536° were very close. However, the course of liquidus and solidus curves and also the sharp shape of endothermic peaks of samples containing 20 mole % and 33

mole % Ag₂O indicated that Ag₂Mo₄O₁₃ and Ag₂Mo₂O₇ in our case melted congruently.

Based on their DTA analyses the authors of [2] suggested that Ag2M04O13, Ag2M02O7 and β -Ag2M0O4 undergo phase transitions at 490, 480 and 482° resp. In the present research the existence of such endothermic peaks in the case of Ag2M04O13 and Ag2M02O7 was not confirmed. On the other hand in the case of samples containing β -Ag2M0O4 (Tables 3 and 4) a weak endothermic DTA peak was observed between 492 and 500° corresponding to the 482° peak observed in [2]. However, no phase transformation about this temperature was observed in x-ray heating camera. The presence of small amounts of Ag2M02O7 and metallic silver detected after heating Ag2M0O4 suggests that this effect might be due to the partial disproportionation:

 $2Ag_2MoO_4 \rightarrow Ag_2Mo_2O_7 + Ag_2O \rightarrow Ag_2Mo_2O_7 + 2Ag + 1/2O_2$

Analogous experiments in the x-ray heating camera did not indicate any phase transformations neither in the Ag2Mo2O7 nor in the Ag2Mo4O13 phase.

The discrepancies between the results of both investigations may evidently be due to the differences in the way of the preparation of the samples. The role of experimental conditions should also be taken into account. If samples are obtained by the reaction occurring in the solid state (as it is in this case) such factors as dispersion of substrates and heating conditions may predominantly influence the kinetics of the process and thus the phase composition and generally the physico-chemical properties of the final product.

* * *

The author wishes to thank Professor M. Figlarz from Université de Picardie, Amiens for giving the possibility of carrying out in his laboratory a part of the experiments described.

References

2 R. Kohlmullar and J. P. Faurie, Bull. Soc. Chim. Fr., 11 (1968) 4379.

¹ E. Wenda, Journal of Thermal Anal., (1985) 879.

Zusammenfassung — Es wurde das Phasendiagramm des Systemes MoO3-Ag2O erstellt. Der Vergleich dieses Phasendiagrammes mit dem des in (2) beschriebenen Systemes MoO3-Ag2MoO4, ergeben sich einige Unterschiede.

Man fand, daß ein Phasengleichgewicht im System MoO3-Ag2O nur nach Abkühlen des zuvor geschmolzenen Gemisches aus Silber- und Molybdänoxides erreicht werden kann.